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oating-point applications. However, the increasing emphasis on high perfor-mance graphics and the industry-wide usage of performance benchmarks forces processordesigners to pay close attention to all aspects of 
oating-point computation. Many algo-rithms are suitable for implementing division in hardware. This paper presents four majorclasses of algorithms in a uni�ed framework, namely digit recurrence, functional iteration,very high radix, and variable latency. Digit recurrence algorithms, the most common ofwhich is SRT, use subtraction as the fundamental operator, and they converge to a quo-tient linearly. Division by functional iteration converges to a quotient quadratically usingmultiplication. Very high radix division algorithms are similar to digit recurrence algo-rithms, but they incorporate multiplication to reduce the latency. Variable latency divisionalgorithms reduce the average latency to form the quotient. These algorithms are explainedand compared in this work. It is found that for low-cost implementations where chip areamust be minimized, digit recurrence algorithms are suitable. An implementation of divisionby functional iteration can provide the lowest latency for typical multiplier latencies. Vari-able latency algorithms show promise for simultaneously minimizing average latency whilealso minimizing area.Key Words and Phrases: Floating-point, division, algorithms, SRT, functional itera-tion, very high radix, variable latency, computer arithmetic
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1 IntroductionIn recent years computer applications have increased in their computational complexity.The industry-wide usage of performance benchmarks, such as SPECmarks, forces processordesigners to pay particular attention to implementation of the 
oating-point unit, or FPU.Special purpose applications, such as high performance graphics rendering systems, haveplaced further demands on processors. High speed 
oating-point hardware is a requirementto meet these increasing demands.Modern applications comprise several 
oating point operations including addition, mul-tiplication, and division. In recent FPUs, emphasis has been placed on designing ever-fasteradders and multipliers, with division receiving less attention. Typically, the range for addi-tion latency is 2 to 4 cycles, and the range for multiplication is 2 to 8 cycles. In contrast, thelatency for double precision division in modern FPUs ranges from less than 8 cycles to over60 cycles [24]. A common perception of division is that it is an infrequent operation whoseimplementation need not receive high priority. However, it has been shown that ignoringits implementation can result in signi�cant system performance degradation for certain ap-plications [27]. While the methodology for designing e�cient high-performance adders andmultipliers is well-understood, the design of dividers still remains a serious design challenge,often viewed as a \black-art" among system designers. Extensive theory exists describingthe theory of division. However, the design space of the algorithms and implementationsis large, due to the large number of parameters involved. Furthermore, deciding upon anoptimal design depends heavily on its requirements.Division algorithms can roughly be divided into four classes. The �rst and most commonclass is digit recurrence. The majority of commercial implementations are based on thisclass. Digit recurrence algorithms form a quotient one digit at a time, in a manner similarto traditional paper-and-pencil division. SRT division is a widely used variation of digitrecurrence division, named for Sweeney, Robinson, and Tocher who independently proposedthe algorithm. In each step of the algorithm a multiple of the divisor is subtracted fromthe dividend or partial remainder. The latency of forming a quotient using digit recurrenceis linear with the length of the operands. The major advantages of digit recurrence aresimplicity of implementation and the availability of a �nal remainder at the completion ofthe computation. The disadvantage is the linear convergence.The second class of algorithms is functional iteration. These algorithms represent thedivision or reciprocal operation as a function, and use function-solving techniques such asthe Newton-Raphson equation to converge to the quotient or reciprocal. Several commer-cial implementations have been based on this class of algorithm. Implementations of theNewton-Raphson equation require approximately two multiplications per step of the iter-ation, rather than a simple subtraction. The advantage of functional iteration is that itconverges to the quotient or reciprocal faster than linearly, with typical implementationsconverging quadratically. The disadvantages are that the complexity per step of the itera-tion is complex and that a �nal remainder is not readily available.The third class of algorithms is known as very high radix division. These algorithms areessentially extensions of simple digit recurrence algorithms to higher radices. The term veryhigh radix typically refers to division implementations that retire more than 10 quotient bits1
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per iteration step. These algorithms incorporate multiplication into the iteration step tosimplify the formation of quotient digits and divisor multiples. The advantages of very highradix division are that more quotient bits are retired per step than simple digit recurrenceand a �nal remainder is available. The iteration step requires more complexity than simpledigit recurrence, but can require less than functional iteration. The disadvantage is linearconvergence to the quotient. Only one commercial implementation has been based on thisclass of algorithm, the Cyrix 83D87 arithmetic coprocessor [2]. As the desire for higherperformance division increases, this class could become more common.The fourth class of algorithms is variable latency algorithms. Whereas the �rst threeclasses always have a �xed latency regardless of the input operands, variable latency algo-rithms have the ability to produce a result faster than the worst case latency, depending onthe operands. These algorithms allow for increased average division performance without allof the complexity required for increased worst case division performance. However, a systemthat incorporates such a divider must be able to manage variable latency functional units.Therefore, such a system is typically more complex. One commercial processor implementa-tion uses a variable latency divider, the self-timed divider in the Hal Sparc64 microprocessor[24]. However, variable latency functional units hold promise for future processors. As sys-tems become more complex and allow for out-of-order execution and completion, variablelatency dividers will be a cost-e�ective method for improving 
oating-point performance.In the past, others have presented summaries of speci�c classes of division algorithmsand implementations. Flynn [19] discusses the theory and methodology of multiplication-based division algorithms. Atkins [1] is the �rst major analysis of SRT algorithms. Tan[38] derives and presents the theory of high-radix SRT division, along with an analyticmethod of implementing SRT look-up tables. Soderquist [35] presents performance and areatradeo�s in divider design in the context of a specialized application. Ercegovac and Lang[9] present a thorough coverage of SRT algorithms. This study synthesizes the fundamentalaspects of these and other works, in order to clarify the division design space. The fourclasses of division algorithms are presented and analyzed in terms of the three major designparameters: latency in system clock cycles, cycle time, and area. Other issues related to theimplementation of division in actual systems are also presented. Throughout this work, themajority of the discussion is devoted to division, but the theory of square-root computationis an extension of the theory of division, and most of the analyses and conclusions fordivision can also be applied to the design of square-root units. Further details regardingsquare-root computation are presented in appendix B.The remainder of this paper is organized as follows. Section 2 presents digit recurrencealgorithms. Section 3 presents functional iteration. Sections 4 and 5 discuss very high radixand variable latency algorithms. Section 6 compares the algorithm classes. Section 7 is theconclusion. 2
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2 Digit Recurrence AlgorithmsThe simplest and most widely implemented class of division algorithms is digit recurrence.Digit recurrence algorithms retire a �xed number of quotient bits in every iteration. Imple-mentations of digit recurrence algorithms are typically of low complexity, utilize small area,and have relatively large latencies. The fundamental issues in the design of a digit recur-rence divider are the radix, the choice of allowed quotient digits, and the representation ofthe intermediate remainder. The radix determines how many bits of quotient are retired inan iteration, which �xes the division latency. Larger radices can reduce the latency, but in-crease the time for each iteration. Judicious choice of the allowed quotient digits can reducethe time for each iteration, but with a corresponding increase in complexity and hardware.Similarly, di�erent representations of the intermediate remainder can reduce iteration time,with corresponding increases in complexity.Various techniques have been proposed for further increasing division performance, in-cluding staging of simple low-radix stages, overlapping sections of one stage with anotherstage, and prescaling the input operands. All of these methods introduce tradeo�s in thetime/area design space. This section introduces the principles of digit recurrence division,along with an analysis of methods for increasing the performance of digit recurrence imple-mentations. Also presented are techniques for handling �nal rounding and conversion in ane�cient manner.2.1 De�nitionsDigit recurrence algorithms use subtractive methods to calculate quotients one digit periteration. For the purposes of this paper, the input operands are assumed to be representedin a normalized 
oating-point format with fractional signi�cands of n radix-r digits in sign-magnitude representation. The algorithms presented in this work are applied only to themagnitudes of the signi�cands of the input operands. Techniques for computing the resultingexponent and sign are straightforward and are not discussed here. The most common formatfound in modern computers is the IEEE 754 standard for binary 
oating-point arithmetic[20]. This standard de�nes single and double precision formats, where n=24 for singleprecision and n=53 for double precision. The signi�cand consists of a normalized quantity,with an explicit or implicit leading bit to the left of the implied binary point.Digit recurrence algorithms can be further divided into restoring and nonrestoring di-vision. Restoring division is similar to the familiar paper and pencil division. When dividingtwo n-bit numbers, the division can require up to 2n + 1 adds. Nonrestoring division elimi-nates the restoration cycles, and thus only requires up to n adds. This can be accomplishedby allowing negative values of the quotient as well as positive values. In this way, smallerrors in one iteration can be corrected in subsequent iterations. SRT division is the nameof the most common form of nonrestoring division. This class of division was named forSweeney, Robertson, and Tocher, who independently proposed similar nonrestoring divisionalgorithms [40]. The remainder of this section presents aspects relevant to SRT division.3
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2.2 RecurrenceFor division, the quotient can be computed as follows:q = dividenddivisorAccordingly, this expression can be rewritten as:dividend = q � divisor+ remaindersuch thatjremainderj < jdivisorj � ulp and sign(remainder) = sign(dividend)where the input operands are given by dividend and divisor, and the results are q andremainder. The precision of the quotient is de�ned by the unit in the last position (ulp),where for an integer quotient ulp = 1, and for a fractional quotient ulp = r�n, assuming aradix-r representation and an n-digit quotient.The following recurrence is used at every iteration:P0 = dividend (1)Pj+1 = rPj � qj+1divisor (2)where Pj is the partial remainder, or residual, at iteration j.In each iteration, one digit of the quotient is determined by the quotient-digit selectionfunction: qj+1 = SEL(Pj; divisor) (3)In order for the next residual Pj+1 to be bounded, the value of the quotient digit is chosensuch that jPj+1j < divisorThe remainder can be computed from the �nal residual by:remainder = ( Pn � r�n if Pn � 0(Pn + divisor)� r�n if Pn < 0Furthermore, the quotient has to be adjusted when Pn < 0 by subtracting r�n.2.3 Implementation of Basic SchemeA block diagram of an implementation of the basic recurrence is shown in �gure 1. Thecritical path of the topology is shown by the dotted line.As can be noted from equations 1 and 2, each iteration of the recurrence comprises thefollowing steps: 4
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MUX
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SUBTRACTORFigure 1: Basic SRT Topology� Determine next quotient digit qj+1 by the quotient-digit selection function.� Generate the product qj+1 � divisor.� Subtract qj+1 � divisor from r � PjEach of these components can contribute to the overall cost and performance of thealgorithm. Depending on certain parameters of the algorithm, the execution time can varywidely. To tradeo� cost for performance, these parameters can be studied and appropriatelychosen.2.3.1 Choice of RadixThe fundamental method of decreasing the overall latency (in machine cycles) of the al-gorithm is to increase the radix r of the algorithm. It is convenient to choose the radixto be a power of 2. In this way, the product of the radix and the partial remainder canbe formed by shifting. Assuming the same quotient precision, the number of iterations ofthe algorithm required to compute the quotient is reduced by a factor k when the radix isincreased from r to rk. For example, a radix 4 algorithm retires 2 bits of quotient in everyiteration. Increasing to a radix 16 algorithm will allow for retiring 4 bits in every iteration,for a 2X reduction in latency. This reduction does not come for free. As the radix increases,the quotient-digit selection becomes more complicated. It can be seen from �gure 1 thatquotient selection is on the critical path of the basic algorithm. The cycle time of the di-vider is de�ned as the minimum time to complete this critical path. The result of this isthat the number of cycles may have been reduced due to the increased radix. However, the5
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time per cycle may have increased. As a result, the total time required to compute an n bitquotient will not be reduced by the factor k. Additionally, the generation of all requireddivisor multiples may become impractical or infeasible for higher radices. Thus, these twofactors can o�set some or possibly all of the performance gained by increasing the radix.2.3.2 Choice of Quotient Digit SetIn digit recurrence algorithms, some range of digits is decided upon for the allowed valuesof the quotient in each iteration. The simplest case is where, for radix r, there are exactlyr allowed values of the quotient. However, to increase the performance of the algorithm, itis desirable to utilize a redundant digit set. Such a digit set can be composed of symmetricsigned-digit consecutive integers, where the maximum digit is a. The digit set is maderedundant by having more than r digits in the set. In particular,qj 2 Da = f�a;�a+ 1; : : : ;�1; 0; 1; : : : ; a� 1; agThus, to make a digit set redundant, it must contain more than r consecutive integer valuesincluding zero, and thus a must satisfy a � dr=2eThe redundancy of a digit set is determined by the value of the redundancy factor �, whichis de�ned as � = ar � 1 ; � > 12Typically, signed-digit representations have a < r� 1. When a = d r2e, the representation iscalled minimally redundant, while that with a = r�1 is called maximally redundant, with� = 1. A representation is known as non-redundant if a = (r� 1)=2, while a representationwhere a > r � 1 is called over-redundant. For the next residual Pj+1 to be bounded whena redundant quotient digit set is used, the value of the quotient digit must be chosen suchthat jPj+1j < �� divisorThe design tradeo� can be noted from this discussion. By using a large number ofallowed quotient digits a, and thus a large value for �, the complexity and latency of thequotient selection function can be reduced. However, choosing a smaller number of alloweddigits for the quotient simpli�es the generation of the multiple of the divisor. Multiplesthat are powers of two can be formed by simply shifting. If a multiple is required thatis not a power of two (e.g. three), an additional operation such as addition may also berequired. This can add to the complexity and latency of generating the divisor multiple.The complexity of the quotient selection function and that of generating multiples of thedivisor must be balanced.After the redundancy factor � is chosen, it is possible to derive the quotient selectionfunction. A containment condition can be derived which allows for determining selection6
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Figure 2: P-D diagram for radix-4interval expressions. A selection interval is the region in which a particular quotient digitcan be chosen. These expressions are given byUk = (�+ k)d Lk = (��+ k)dwhere Uk (Lk) is the largest (smallest) value of rPj such that it is possible for qj+1 = k tobe chosen and still keep the next partial remainder bounded. The P -D diagram is a usefulvisual tool when designing a quotient-digit selection function. It has as axes the shiftedpartial remainder and the divisor. The selection interval bounds Uk and Lk are drawn aslines starting at the origin with slope � + k and �� + k, respectively. A P-D diagram isshown in �gure 2 with r = 4 and a = 2. The shaded regions are the overlap regions wheremore than one quotient digit may be selected.2.3.3 Residual RepresentationThe residual can be represented in either of two di�erent forms, either redundant ornonredundant forms. Conventional 2's complement representation is an example of anonredundant form, while carry-save 2's complement representation is an example of aredundant form. Each iteration requires a subtraction to form the next residual. If thisresidual is in a nonredundant form, then this operation would require a full-width adderrequiring carry propagation. Consequently, the cycle time would be large.If the residual is computed in a redundant form, a carry-free adder can be used inthe recurrence, minimizing the cycle time. However, the quotient-digit selection, which is7
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CONVERTERFigure 3: Enhanced SRT Topologya function of the shifted residual, becomes more complex. Additionally, twice as manyregisters are required to store the residual between iterations. Finally, if the remainderis required from the divider, the last residual will have to be converted to a conventionalrepresentation. At a minimum, it is necessary to be able to determine the sign of the�nal remainder in order to implement a possible quotient correction step, as discussedpreviously. A block diagram of a divider with redundant residual and quotient-digit set isshown in �gure 3.2.3.4 Quotient-Digit Selection FunctionCritical to the performance of a divider is the e�cient implementation of the quotientselection function. If a redundant representation is chosen for the residual, the residualis not known exactly, and neither is the exact next quotient digit. However, by using aredundant quotient digit set, the residual does not need to be known exactly to select thenext quotient digit. It is only necessary to know the residual well enough to know whichrange in �gure 2 it lies. The selection function is realized by approximating the residualPj and divisor to compute qj+1. This is typically done by means of a lookup table. Thechallenge in the design is deciding how many bits of Pj and divisor are needed, whilesimultaneously minimizing the complexity of the table.The standard method of designing SRT lookup tables is through the use of selectionconstants. The divisor range is separated into equal intervals [di; di+1) such that:d1 = 12 ; di+1 = di + 2��8
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The interval can be represented by the � most signi�cant bits of the divisor. Within eachinterval, a quotient digit is selected by the selection constants mk(i) as given by:for d 2 [di; di+1); qj+1 = k if mk(i) � rPj � mk+1(i)� r�nThe set of selection constants for a given value of k form a series of steps that connect theoverlap regions in �gure 2. The greater the redundancy factor of the implementation, thewider the steps can be, and the fewer bits of divisor and/or residual that are needed.Let d̂ be an estimate of the divisor using the � most signi�cant bits of the true divisorand P̂j be an estimate of the partial remainder using the c most signi�cant bits of the truepartial remainder. To determine the minimum values for � and c, it is necessary to considerthe uncertainty region in the resulting estimates d̂ and P̂j . The estimates will have errors �dand �p for the divisor and partial remainder estimates respectively. Because the estimatesof both quantities are formed by truncation, �d and �p can each be 1 ulp. Additionally, ifthe partial remainder is kept in a carry-save form, �p can be as much as 2 ulps. This isdue to the fact that both the sum and the carry values have been truncated, and each canhave a 1 ulp error. When the two are summed to form a nonredundant estimate of thepartial remainder, the actual error can be 2 ulps. The worst case ratios of P̂j and d̂ mustbe checked for all possible values of the estimates. For a two's complement representationof the partial remainder, �d and �p are always positive, and the maximum and minimumvalues of the ratio are given by:maximum = 8<: P̂j+�pd̂ if Pj � 0P̂ĵd if Pj < 0minimum = 8><>: P̂jd̂+�d if Pj � 0P̂j+�pd̂+�d if Pj < 0It is necessary for the minimum and maximum values of the ratio to lie in regions such thatboth values can take on the same quotient digit. If the values require di�erent quotientdigits, then the uncertainty region is too large for the table con�guration. Several iterationsover the design space may be necessary to determine an optimal solution for the combinationof radix, redundancy, values of � and c, and error terms �p and �d.Having performed the analysis to determine an optimal choice for the design parameters,the resulting table will be asymmetrical around zero. The asymmetry in the table is dueto the asymmetry in the two's complement number system. To implement such a table inhardware, it is necessary to implement both the positive and negative halves of the table.This can lead to a large and slow implementation. An optimization can be made by carefully\folding" the negative portion of the table into the positive half [17]. For negative partialremainders, this requires conversion to a signed magnitude form. While the resulting tablewill be smaller and faster, the critical path of the divider increases by the delay of a two'scomplement to signed magnitude converter, which is essentially the delay of an exclusive-orgate. Figure 4 shows an implementation of a folded radix-4 next quotient-digit table thatalso supports shared square-root [18]. 9
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B = 2 if negative and y bit = 1; B = 1 otherwise.Figure 4: Radix-4 next quotient/root selection table2.4 Increasing Performance2.4.1 Simple StagingIn order to retire more bits of quotient in every cycle, a simple low-radix divider canbe replicated many times to form a higher radix divider, as shown in �gure 5. In thisimplementation, the critical path is equal to:titer = 2tqsel + 2tqDsel + 2tCSAIn general, the implementation of divider hardware can range from totally sequential,as in the case of a single stage of hardware, to fully combinational, where the hardwareis replicated enough such that the entire quotient can be determined combinationally inhardware. For totally or highly sequential implementations, the hardware requirements aresmall, saving chip area. This also leads to very fast cycle times, but the radix is typicallylow. Hardware replication can yield a very low latency in clock cycles due to the high radixbut can occupy a large amount of chip area and have unacceptably slow cycle times.One alternative to hardware replication to reduce division latency is to clock the dividerat a faster frequency than the system clock. For example, in the HP PA7100, the verylow cycle time of the radix-4 divider compared with the system clock allows it to retire 4bits of quotient every machine cycle, e�ectively becoming a radix-16 divider [16]. The onlyadditional hardware cost in this implementation is a few gates to generate the 2X clock.10
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PRF     rp-qD     partial remainder formationFigure 6: Three methods of overlapping division components2.4.2 Overlapping ExecutionIt is possible to overlap or pipeline the components of the division step in order to reduce thecycle time of the division step [39]. This is illustrated in �gure 6. The standard approachis represented in this �gure by choice 1. Here, each quotient selection is dependent on theprevious partial remainder, and this de�nes the cycle time. Depending upon the relativedelays of the three components, choices 2 or 3 may be more desirable. Choice 2 is appropriatewhen the overlap is dominated by PRF time. This would be the case when the partialremainder is not kept in a redundant form. Choice 3 is appropriate when the overlap isdominated by QS, as it the case when a redundant partial remainder is used.One recent SRT implementation using overlapped execution is reported by Williams[41]. This implementation di�ers from conventional designs in that it uses self-timing anddynamic logic to increase the divider's performance. It comprises �ve cascaded radix-2stages as shown in �gure 7. Because it uses self-timing, no explicit registers are requiredto store the intermediate residual. Accordingly, the critical path does not contain residualregister clock-to-q or setup time delays. The adjacent stages overlap their computation byreplicating the CPAs for each possible quotient digit from the previous stage. This allowseach CPA to begin operation before the actual quotient digit arrives at a multiplexor tochoose the correct branch. Two of the three CPAs in each stage are preceded by CSAsto speculatively compute a truncated version of Pi+1 � D, Pi+1 + D, and Pi+1. Thisoverlapping of the execution between neighboring stages allows the delay through a stageto be the average, rather than the sum, of the propagation delays through the remainderand quotient-digit selection paths. This is illustrated in �gure 7 by the two di�erent drawnpaths. The self-timing of the data path dynamically ensures that data always 
ow throughthe minimal critical path. This divider, implemented in a 1.2�m CMOS technology, is ableto produce a 54-b result in 45 to 160ns, depending upon the particular data operands. TheHal SPARC V9 microprocessor, called the Sparc64 or PM1, also implements a version of12
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Figure 7: Two stages of self-timed dividerthis self-timed divider, producing IEEE double precision results in 8 or 9 cycles [24].2.4.3 Overlapping Quotient SelectionTo avoid the increase in cycle time that results from staging radix-r segments togetherin forming higher radix dividers, some additional quotient computation can proceed inparallel [39]. In such a scheme, the quotient-digit selection of stage j + 2 is overlappedwith the quotient-digit selection of stage j + 1, as shown in �gure 8. This is accomplishedby calculating an estimate of the next residual and the quotient-digit selection for qj+2conditionally for all 2a+ 1 values of the previous quotient digit qj+1. Once the true valueof qj+1 is known, it can be used to select the correct value of qj+2. As can be seen from�gure 8, the critical path is equal to:titer = tqsel + tqDsel + 2tCSA + tmux(data)Accordingly, comparing the simple staging of two stages with the overlapped quotient se-lection method for staging, it can be seen that the critical path has been reduced by�titer = tqsel + tqDsel � tmux(data)This is a reduction of slightly more than the delay of one stage of quotient-digit selection, atthe cost of replicating 2a+1 quotient-digit selection functions. This scheme has diminishingreturns when overlapping more than two stages. Each additional stage requires the calcula-tion of an additional factor (2a+ 1) of quotient-digit values. Thus the kth additional stagewill require (2a + 1)k replicated quotient-selection functions. Because of this exponentialgrowth in hardware, only very small values of k are feasible in practice.Prabhu [30] discusses a radix-8 shared square-root design that utilizes overlapping quo-tient selection in the Sun UltraSPARC microprocessor. In this implementation, three radix-2 stages are cascaded to form a radix-8 divider. The second stage conditionally computesall three possible quotient digits of the the �rst stage, and the third stage computes all13
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three possible quotient digits of the second stage. In the worst case, this would involvereplication of three quotient-selection blocks for the second stage and nine blocks for thethird stage. However, by recognizing that two of the nine blocks conditionally compute theidentical quotient bits as another two blocks, only seven are needed.2.4.4 Overlapping Residual ComputationA further optimization utilized both in the UltraSPARC and the Sparc64 is the overlap-ping of the residual computation. Both dividers implement a radix-2 digit set. Thus, thequotient can only take on the values of -1, 0, and +1. The divider's critical path after thequotient digit has been selected need not contain the delay of divisor multiple formationand the subtraction in the CSA. The divisor multiple formation and CSA hardware can bereplicated three times, assuming one of the three quotient digit values for each replication.A multiplexor is then placed after these three stages so that the quotient digit can select thecorrect partial remainder. The delay is reduced by a CSA in the case of the UltraSPARCand by a CSA and a short CPA in the Sparc64 as shown in �gure 7.Quach [31] and Oberman [29] report similar optimizations for radix-4 implementations.For radix-4, it might initially seem that because of the �ve possible next quotient digits,�ve copies of residual computation hardware would be required. However, in the designof quotient-selection logic, the sign of the next quotient digit is known in advance, as itis just the sign of the previous partial remainder. This reduces the number of number ofcopies of residual computation hardware to three: 0, �1, and �2. However, by looking at astandard implementation of a radix-4 quotient-digit selection table, such as �gure 4, it canbe seen that the boundary between quotient digits 0 and 1 can be easily determined. Totake advantage of this, the quotient digits are encoded as:q(�2) = Sq2q(�1) = Sq1q2q(0) = q1q2q(1) = Sq1q2q(2) = Sq2In this way, the number of copies of residual computation hardware can be reduced to two: 0or �1, and �2. A block diagram of a radix-4 divider with overlapped residual computationis shown in �gure 9. The choice of 0 or �1 is made by q1 early, after only a few gate delays,by selecting the proper input of a multiplexor. Similarly, q2 selects a multiplexor to choosewhich of the two banks of hardware is the correct one, either the 0 or �1 bank, or the �2bank. The critical path of the divider becomes: max(tq1,tCSA)+ 2tmux+ tshortCPA . Thus,at the expense of duplicating the residual computation hardware once, the cycle time of thestandard radix-4 divider is nearly halved.2.4.5 Range ReductionHigher radix dividers can be designed by partitioning the implementation into lower radixsegments, which are cascaded together. Unlike simple staging, in this scheme there is15
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no shifting of the partial remainder between segments. Multiplication by the radix r isperformed only between iterations of the step, but not between segments. The individualsegments reduce the range of the partial remainder so that it is usable by the remainingsegments [9, 18].A radix-8 divider can be designed using a cascade of a radix-2 segment and a radix-4segment. This decomposition is illustrated in �gure 10. In this implementation the quotient
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has the e�ect of increasing the cycle time by the delay of the sign detection logic and amux.The critical path for generating ql is given by:titer = tsignest + tmux + tCSA + tshortCPA + tqlsel + tmux(data)In order to form Pj+1, ql is used to select the proper divisor multiple which is then subtractedfrom the partial remainder from the radix-2 segment. The additional delay to form Pj+1is a mux select delay and a CSA. For increased performance, it is possible to precomputeall partial remainders in parallel and use ql to select the correct result. This reduces theadditional delay after ql to only a mux delay.2.4.6 Simple Operands ScalingHigher radix dividers generally have their cycle times dominated by the time for quotient-digit selection. The complexity of quotient-digit selection increases exponentially for in-creasing radix. To simultaneously decrease latency and cycle time, it is desirable to reducethe complexity of the quotient-digit selection function. By looking at a PD diagram such as�gure 2, it is apparent that the maximum overlap occurs for the largest value of the divisor.Assuming a normalized divisor in the range 1=2 � d < 1, the greatest amount of overlapoccurs close to d = 1. To take advantage of this overlap, the divisor can be restricted to arange close to 1. This can be accomplished by prescaling the divisor [8, 37]. In order thatthe quotient be preserved, either the dividend also must be prescaled, or else the quotientmust be postscaled. In the case of prescaling, if the true remainder is required after thecomputation, postscaling is required. The dividend and the divisor are prescaled by a factorM so that the scaled divisor z is 1� � � z = Md � 1 + �where � and � are chosen in order to provide the same scaling factor for all divisor intervalsand to ensure that the quotient-digit selection is independent of the divisor. The initialpartial remainder is the scaled dividend. The smaller the range of z is, the simpler thequotient-digit selection function is. However, shrinking the range of z becomes more complexfor smaller ranges. Thus, a design tradeo� exists between these two constraints.By restricting the divisor to a range near 1, the quotient-digit selection function becomesindependent of the actual divisor value, and thus is simpler to implement. The radix-4implementation reported in [8] uses 6 digits of the redundant partial remainder as inputs tothe quotient-digit selection function. This function assimilates the 6 input digits in a CPA,and the 6 bit result is used to consult a look-up table to provide the next quotient-digit.The scaling operation is achieved through the use of a 3-operand adder. In the case wherea CSA is already being used for the division recurrence, no additional CSAs are required.Instead, the scalings proceed in sequence. To determine the scaling factor for each operand,a small table is typically consulted which yields the proper factors to add or subtract in theCSA to yield the scaled operand. Thus, prescaling requires a minimum of two additionalcycles to the overall latency; one to scale the divisor, and one to assimilate the divisor in a18
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carry-propagate adder. In parallel with the divisor assimilation, the dividend is scaled, andit can be used directly in redundant form as the initial partial remainder. The motivationfor scaling is that reduction in cycle time due to the simpler quotient-selection logic shouldmore than o�set the addition of any required scaling cycles.Enhancements to the basic prescaling algorithms have been reported by Montuschi [25]and Srinivas [36]. Montuschi reports how the use of an over-redundant digit set can be usedin combination with operand prescaling. The proposed radix-4 implementation uses suchan over-redundant digit set f�4;�3;�2;�1; 0g. The quotient-digit selection function usesa truncated redundant partial remainder that is in the range [�6; 6], requiring four digits ofthe partial remainder as input. A 4-bit CPA is used to assimilate the four most signi�cantdigits of the partial remainder and to add a 1 in the least signi�cant position. The resulting4 bits in two's complement form represent the next quotient digit. The formation of the�3d divisor multiple is an added complication, and the solution for this implementationis to split the quotient digit into two separate stages, one with digit set f0;�4g and onewith f0;�1;�2g. This is the same methodology used in the range reduction techniquespreviously presented. Thus, the use of a redundant digit set simpli�es the quotient-digitselection from requiring 6 bits of input to only 4 bits.Srinivas reports an implementation of prescaling with a maximally redundant digit set.This implementation represents the partial remainder in radix-2 digits f�1; 0;+1g ratherthan carry-save form. Each radix-2 digit is presented by 2 bits. Accordingly, the quotient-selection function need only observe 3 digits of the radix-2 encoded partial remainder. Theresulting quotient digits produced by this algorithm belong to the maximally redundantdigit set f�3; � � � ;+3g. This simpler quotient-digit selection function decreases the cycletime relative to a regular redundant digit set with prescaling implementation. Srinivasreports a 1.21 speedup over Ercegovac's regular redundant digit set implementation, and a1.10 speedup over Montuschi's over-redundant digit set implementation, both for n = 53IEEE double precision mantissas. However, due to the larger than regular redundant digitsets in the implementations of both Montuschi and Srinivas, each requires hardware togenerate the �3d divisor multiple, which in these implementations results in requiring anadditional n CSAs.2.5 Other Issues2.5.1 Quotient ConversionAs presented so far, the quotient has been collected in a redundant form, such that thepositive values have been stored in one register, and the negative values in another. At theconclusion of the division computation, an additional cycle would be required to assimilatethese two registers into a single quotient value using a carry-propagate adder for the subtrac-tion. However, it is possible to convert the quotient digits as they are produced such thatan extra addition cycle is not required. This scheme is known as on-the-
y conversion [9].In on-the-
y conversion, two forms of the quotient are kept in separate registers through-out the iterations, Qk and QMk. QMk is de�ned to be equal to Qk � r�k. The values of19
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these two registers for step k + 1 are de�ned by:Qk+1 = ( Qk + qk+1r�(k+1) if qk+1 � 0QMk + (r� jqk+1j)r�(k+1) if qk+1 < 0and QMk+1 = ( Qk + (qk+1 � 1)r�(k+1) if qk+1 > 0QMk + ((r� 1)� jqk+1j)r�(k+1) if qk+1 � 0From these conditions on the values of Qk and QMk, it can be seen that all of the additionscan be implemented with concatenations. As a result, there is no carry or borrow propa-gation required. As every quotient digit is formed, each of these two registers is updatedappropriately, either through register swapping or concatenation.2.5.2 RoundingThe previously described on-the-
y conversion can be extended to also handle �nal round-ing [9]. For 
oating-point representations such as the IEEE 754 standard, provisions forrounding are required. Traditionally, this is accomplished by computing an extra guard digitin the quotient and examining the �nal remainder. Based on the rounding mode selectedand these two values, one ulp is conditionally added. The disadvantages in the traditionalapproach are that 1) the remainder may be negative and require a restoration step, and2) the the addition of one ulp may require a full carry-propagate-addition. Accordingly,support for rounding can be expensive, both in terms of area and performance.To extend the on-the-
y techniques, it is necessary to keep a third version of the quotientat all times QPk , where QPk = Qk + r�k. Correct rounding requires the computation ofthe sign of the �nal remainder. Sign detection logic requires at a minimum some form ofcarry-propagation detection network, such in standard carry-lookahead adders. The �nalquotient can be selected from the three available versions. For negative remainders, QMk orQk can be chosen to appropriately reduce the quotient or round it. For positive remainder,either QPk or Qk is chosen, again depending on the rounding conditions.2.6 AnalysisThis section has presented the various tradeo�s in digit recurrence division. Fundamentally,to reduce division latency, more bits need to be retired in every cycle. However, directlyincreasing the radix can greatly increase the cycle time and the complexity of divisor mul-tiple formation. The alternative is to stage lower radix stages together to form higher radixdividers, through simple staging or segments, and possibly overlapping one or both of thequotient selection logic and residual computation hardware. All of these alternatives leadto an increase in area, complexity and potentially cycle time. Given the continued industrydemand for ever-lower cycle times, any increase must be managed.Higher degrees of redundancy in the quotient digit set and operand prescaling are thetwo primary means of further reducing the recurrence cycle time. These two methods canbe combined for an even greater reduction. For radix-4 division with operand prescaling, it20
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has been shown that an over-redundant digit set can reduce the number of partial remainderbits required for quotient selection from 6 to 4. Choosing a maximally redundant set and aradix-2 encoding for the partial remainder can reduce the number of partial remainder bitsrequired for quotient selection down to 3. However, each of these enhancements requiresadditional area and complexity for the implementation that must be considered.Due to the cycle time constraints and area budgets of modern processors, these dividersare realistically limited to retiring fewer than 10 bits per cycle. However, a digit recurrencedivider is an e�ective means of implementing a low cost division unit which operates inparallel with the rest of a processor.3 Functional IterationUnlike digit recurrence division, division by functional iteration utilizes multiplication asthe fundamental operation. The primary di�culty with subtractive division is the linearconvergence to the quotient. Multiplicative division algorithms, though, are able to take ad-vantage of high-speed multipliers to converge to a result quadratically. Rather than retiringa �xed number of quotients bits in every cycle, multiplication-based algorithms are able todouble the number of correct quotient bits in every iteration. However, the tradeo� betweenthe two classes is not only latency in terms of the number of iterations, but also the length ofeach iteration in cycles. Additionally, if the divider shares an existing multiplier, the perfor-mance rami�cations on regular multiplication operations must be considered. Oberman [26]reports that in typical 
oating-point applications, the performance degradation due to ashared multiplier is small. Accordingly, if area must be minimized, an existing multipliermay be shared with the division unit with only minimal system performance degradation.This section presents the algorithms used in multiplication-based division, both of whichare related to the Newton-Raphson equation. Additionally, it discusses issues related toincreasing the performance of multiplication-based division algorithms, including methodsfor generating starting approximations, type of multiplier, and rounding methods.3.1 Newton-RaphsonDivision can be written as the product of the dividend and the reciprocal of the divisor, orQ = a=b = a � (1=b);where Q is the quotient, a is the dividend, and b is the divisor. In this case, the challengebecomes how to e�ciently compute the reciprocal of the divisor. In the Newton-Raphsonalgorithm, a priming function is chosen which has a root at the reciprocal [19]. In general,there are many root targets that could be used, including 1b , 1b2 , ab , and 1 � 1b . The choiceof which root target to use is arbitrary. The selection is made based on convenience of theiterative form, its convergence rate, its lack of divisions, and the overhead involved whenusing a target root other than the true quotient.The most widely used target root is the divisor reciprocal 1b , which is the root of thepriming function f(X) = 1=X � b = 0: (4)21
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The well-known quadratically converging Newton-Raphson equation is given by:xi+1 = xi � f(xi)f 0(xi) (5)The Newton-Raphson equation of (5) is then applied to (4). The function and its �rstderivative are evaluated at X0: f(X0) = 1=X0 � bf 0(X0) = �1=X20 :These results are then used to �nd an approximation to the reciprocal:X1 = X0 � f(X0)f 0(X0)X1 = X0 + (1=X0 � b)(1=X20)X1 = X0 � (2� b�X0) (6)...Xi+1 = Xi � (2� b�Xi) (7)The corresponding error term is given by�i+1 = �2i (b);and thus the error in the reciprocal decreases quadratically after each iteration. As can beseen from the general relationship expressed in (7), each iteration involves two multiplica-tions and a subtraction. The subtraction is equivalent to the two's complement operationand is commonly replaced by it. Thus, two dependent multiplications and one two's comple-ment operation are performed each iteration. The �nal quotient is obtained by multiplyingthe computed reciprocal with the dividend.It can be seen that the number of operations per iteration and their order are intrinsicto the iterations themselves. However, the number of iterations required to obtain thereciprocal accurate to a particular number of bits is a function of the accuracy of the initialapproximation X0. By using a more accurate starting approximation, the total number ofiterations required can be reduced. To achieve 53 bits of precision for the �nal reciprocalstarting with only 1 bit, the algorithm will require 6 iterations:1! 2! 4! 8! 16! 32! 53By using a more accurate starting approximation, for example 8 bits, the latency can bereduced to 3 iterations. By using at least 14 bits, the latency could be further reduced toonly 2 iterations. 22
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3.2 Series ExpansionA di�erent method of deriving a division iteration is based on a series expansion. A namesometimes given to this method is Goldschmidt0s algorithm. Consider the familiar Taylorseries expansion of a function g(y) at point a p,g(y) = g(p) + (y � p)g0(p) + (y � p)22! g00(p) + � � �+ (y � p)nn! g(n)(p) + � � � :In the case of division, it is desired to �nd the expansion of the reciprocal of the divisor,such that q = ab = a� g(y);where g(y) can be computed by an e�cient iterative method. A straightforward approachmight be to choose g(y) equal to 1=y with p = 1, and then to evaluate the series. However,it is computationally easier to let g(y) = 1=(1 + y) with p = 0, which is just the Maclaurinseries. Then, the function isg(y) = 11 + y = 1� y + y2 � y3 + y4 � � � � :So that g(y) is equal to 1/b, the substitution y = b � 1 must be made, where b is bitnormalized such that 0:5 � b < 1, and thus jY j � 0:5. Then, the quotient can be written asq = a� 11 + (b� 1) = a� 11 + y = a� (1� y + y2 � y3 + � � �)which, in factored form, can be written asq = a � [(1� y)(1 + y2)(1 + y4)(1 + y8) � � �]: (8)This expansion can be implemented iteratively as follows. An approximate quotient canbe written as qi = NiDiwhere Ni and Di are iterative re�nements of the numerator and denominator after step i ofthe algorithm. By forcing Di to converge toward 1, Ni converges toward q. E�ectively, eachiteration of the algorithm provides a correction term (1 + y2i) to the quotient, generatingthe expansion of (8).Initially, let N0 = a and D0 = b. To reduce the number of iterations, a and b should bothbe prescaled by a more accurate approximation of the reciprocal, and then the algorithmshould be run on the scaled a0 and b0. For the �rst iteration, let N1 = R0 � N0 andD1 = R0 �D0, where R0 = 1� y = 2� b, or simply the two's complement of the divisor.Then, D1 = D0 �R0 = b� (1� y) = (1 + y)(1� y) = 1� y2:Similarly, N1 = N0 �R0 = a� (1� y):23
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For the next iteration, let R1 = 2 � D1, the two's complement of the new denominator.From this, R1 = 2�D1 = 2� (1� y2) = 1 + y2N2 = N1 � R1 = a � [(1� y)(1 + y2)]D2 = D1 � R1 = (1� y2)(1 + y2) = (1� y4)Continuing, a general relationship can be developed, such that each step of the iterationinvolves two multiplicationsNi+1 = Ni � Ri and Di+1 = Di �Riand a two's complement operation, Ri+1 = 2�Di+1After i steps, Ni = a� [(1� y)(1 + y2)(1 + y4) � � �(1 + y2i)] (9)Di = (1� y2i) (10)Accordingly, N converges quadratically toward q and D converges toward 1. This can beseen in the similarity between the formation of Ni in (9) and the series expansion of qin (8). So long as b is normalized in the range 0:5 � b < 1, then y < 1, each correctionfactor (1 + y2i) doubles the precision of the quotient. This process continues as showniteratively until the desired accuracy of q is obtained.Consider the iterations for division. A comparison of equation (9) using the substitutiony = b� 1 with equation (7) using X0 = 1 shows that the results are identical iteration foriteration. Thus, the series expansion is mathematically identical to the Newton-Raphsoniteration forX0 = 1. Additionally, each algorithm can bene�t from a more accurate startingapproximation of the reciprocal of the divisor to reduce the number of required iterations.However, the implementations are not exactly the same. First, Newton-Raphson convergesto a reciprocal, and then multiplies by the dividend to compute the quotient, whereasthe series expansion �rst prescales the numerator and the denominator by the startingapproximation and then converges directly to the quotient. Each iteration in both algo-rithms comprises two multiplications and a two's complement operation. From (7), it canbe noted that the multiplications in Newton-Raphson are dependent operations. In theseries expansion implementation, though, the two multiplications of the numerator and de-nominator are independent operations and may occur in parallel. As a result, the seriesexpansion implementation can take advantage of an existing pipelined multiplier to obtainhigher performance. Second, the Newton-Raphson iteration is self-correcting, in that anyerror in computing Xi can be corrected in the subsequent iteration, since all operationsare dependent. However, in the series-expansion implementation, the result is computed asthe product of independent terms, and the error in one of them will not be corrected. Toaccount for this error, the calculations should use a few extra bits of precision. A perfor-mance enhancement that can be used for both iterations is to perform early computations24
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in reduced precision. This is reasonable, because the early computations do not generatemany correct bits. As the iterations continue, quadratically larger amounts of precision arerequired in the computation.In practice, dividers based on functional iteration have used both versions. The Newton-Raphson algorithm was used in the Astronautics ZS-1 [4], Intel i860 [21], and the IBMRS/6000 [22]. The series expansion was used in the IBM 360/91 [15] and TMS390C602A[13]. Latencies for such dividers range from 11 cycles to more than 16 cycles, dependingupon the precision of the initial approximation and the latency and throughput of the
oating-point multiplier.3.3 Starting ApproximationsAs mentioned previously, Newton-Raphson and series expansion division implementationscan bene�t from a more accurate initial reciprocal approximation. There is one standardmethods and one newer method of forming starting approximations:1. Look-up tables2. Partial product arrays3.3.1 Look-up tablesFor modern division implementations, the most common method of generating startingapproximations is through a look-up table. Such a table is typically implemented in theform of a ROM or a PLA. Typical implementations consist of a 1 kilobyte ROM whichprovides an approximation of 8 or 9 bits. An advantage of look-up tables is that they arefast, since no arithmetic calculations need be performed. The disadvantage is that a look-uptable's size grows exponentially with each bit of added accuracy. Accordingly, a tradeo�exists between the precision of the table and its size.To index into a reciprocal table, it is assumed that the operand is IEEE normalized1:0 � b < 2. Given such a normalized operand, k bits of the truncated operand are usedto index into a table providing m output bits of the reciprocal approximation, which hasthe range 0:5 < recip � 1. The truncated operand is represented as 1.b01b02 � � �b0k, and theoutput reciprocal approximation is 0.1b01b02 � � �b0m. Typically, the design of a reciprocal tablestarts with a speci�cation for the minimum accuracy of the table, often expressed in bits.This value dictates the minimum size of each table entry. To determine the number of bitsof the input operand required to index into the table, the following expression is evaluated:j1b � 1b� 2�n j � �0;where �0 is de�ned as the error due to approximation. When truncating b at the nth bit,the reciprocal approximation must not di�er from the true reciprocal by more than �0.A common method of designing the look-up table is to implement a piecewise-constantapproximation of the reciprocal function. In this case, the approximation for each entry isfound by taking the reciprocal of the mid-point between 1.b01b02 � � �b0k and its successor where25
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the mid-point is 1.b01b02 � � �b0k1. The reciprocal of the mid-point is rounded by adding 2�(m+1),and then truncating the result to produce the reciprocal approximation 0.1b01b02 � � �b0m. Ascan be seen, all values will have a leading-one that can be implied and therefore do not needto be explicitly stored in the table.Das Sarma [5] has shown that the piecewise-constant approximation method for gener-ating reciprocal look-up tables minimizes the maximum relative error in the �nal result. Hefurther describes how to generate optimal k-bits-in m-bits-out reciprocal tables. A k-bits-ink-bits-out reciprocal table will guarantee a precision of at least k + 0:415 bits. Also, itis shown that with m = k + g, where g is the number of output guard bits, a generatedtable with one, two, and three guard bits on the output are guaranteed precision of at leastk + 0:678 bits, k + 0:830 bits, and k + 0:912 bits respectively.Rather than using a constant approximation to the reciprocal, it is possible to use alinear or polynomial approximation. A polynomial approximation is expressed in the formof a truncated series of the form:P (x) = a0 + a1x+ a2x2 + a3x3 + � � �To get a �rst order or linear approximation, the coe�cients a0 and a1 are stored in a look-uptable, and a multiplication and an addition are required. Schulte [14] developed methods forselecting constant and linear approximations which minimize the absolute error of the �nalresult for Newton-Raphson implementations. Minimizing the maximum relative error in aninitial approximation minimizes the maximum relative error in the �nal result. However,the initial approximation which minimizes the maximum absolute error of the �nal resultdepends on the number of iterations of the algorithm. Accordingly, they present the tradeo�between n, the number of iterations, and k, the number of bits used as input to the table, forconstant and linear approximations, and the e�ects on the absolute error of the �nal result.In general, linear approximations guarantee more accuracy than constant approximations,but they require twice as many entries in the table and additional operations.In a more recent study, Das Sarma [6] describes bipartite reciprocal tables. These tablesutilize separate table lookup of the positive and negative portions of a reciprocal value inborrow-save form. This separation allows 4-9 bit reciprocal tables to be 2 to 4 times smallerthan conventional tables. For 10-16 bit tables, bipartite tables can be 4 to more than 16times smaller than conventional implementations. Using such bipartite tables may allowfor larger starting approximations than would normally be considered.3.3.2 Partial Product ArraysAnother alternative to look-up tables for starting approximation is the use of partial productarrays [33]. A partial product array can be derived which sums to an approximation of thereciprocal operation. Such an array is similar to the partial product array of a multiplier.As a result, an existing 
oating-point multiplier can be used to perform the summation.A multiplier used to implement IEEE double precision numbers involves 53 rows of 53elements per row. This entails a large array of 2809 elements. If Booth encoding is used inthe multiplier, the bits of the partial products are recoded, decreasing the number of rowsin the array by half. A Booth multiplier typically has only 27 in the partial product array.26
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A multiplier sums all of these boolean elements to form the product. However, each booleanelement of the array can be replaced by a generalized boolean element. By back-solvingthe partial product array, it can be determined what elements are required to generate theappropriate function approximation. These elements are chosen carefully to provide a high-precision approximation and reduce maximum error. This can be viewed as analogous to thechoosing of coe�cients for a polynomial approximation. In this way, a partial product arrayis generated which reuses existing hardware to generate a high-precision approximation.In the case of the reciprocal function, a 17 digit approximation can be chosen whichutilizes 18 columns of a 53 row array. Less than 20% of the array is actually used. However,the implementation is restricted by the height of the array, which is the number of rows.The additional hardware for the multiplier is 484 boolean elements. It has been shown thatsuch a function will yield a minimum of 12.003 correct bits, with an average of 15.18 correctbits. An equivalent ROM look-up table that generates 12 bits would require about 39 timesmore area. If a Booth multiplier is used with only 27 rows, a di�erent implementationcan be used. This version uses only 175 boolean elements. It generates an average of 12.71correct bits and 9.17 bits in the worst case. This is about 9 times smaller than an equivalentROM look-up table.3.4 RoundingThe main disadvantage of using functional iteration for division is the di�culty in obtain-ing a correctly rounded result. With subtractive implementations, both a result and aremainder are generated, making rounding a straightforward procedure. Functional itera-tion which converges directly to the quotient, such as the series expansion implementation,only produces a result which is close to the correctly rounded quotient, and it does not pro-duce a remainder. The Newton-Raphson algorithm has the additional disadvantage thatit converges to the reciprocal, not the quotient. Even if the reciprocal can be correctlyrounded, it does not guarantee that the quotient will be correctly rounded.There are two main techniques used to compute a correctly rounded result when usingseries expansion functional iteration. The �rst method requires a datapath twice as wide asthe �nal result. The quotient is computed to a little more than twice the precision of the�nal quotient, and then the extended result is rounded to the �nal precision. An explanationof this procedure is as follows. Consider that the dividend X and the divisor Y are bothnormalized and represented by b bits, and the �nal quotient Q = X=Y is represented by bbits. It must be �rst noted that the exact halfway quotient can not occur when dividing twob bit normalized numbers. For an exact halfway case, the quotient would be representedby exactly a b + 1 bit number with both its MSB and LSB equal to 1, and thus havingexactly b� 1 bits between its most signi�cant and least signi�cant 1's. The product of sucha number with any non-zero �nite binary number must also have the same property, andthus the dividend must have this property. But, the dividend is de�ned to be a normalizedb bit number, and thus can it can have a maximum of b�2 bits between its most signi�cantand least signi�cant 1's.To obtain b signi�cant bits of the quotient, b bits are computed if the �rst quotient bitis 1, and b + 1 bits if the �rst quotient bit is 0. At this point, because the exact halfway27
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case can not occur, rounding can proceed based solely on the values of the next quotientbit and the sticky bit. The sticky bit is 0 if the remainder at this point is exactly zero. Ifany bit of the remainder is 1, then the sticky bit is 1. Let R0 be the value of the remainderafter this computation, assuming the �rst bit is 1:X = Q0 � Y + R0; with R0 < 2�bThen, compute another b bits of quotient, denoted Q1.R0 = Q1 � Y +R1; with R1 < 2�2bQ1 is less than 2�b, with an accuracy of 2�2b, and Y is normalized to be accurate to 2�b.Accordingly if Q1 = 0, then R0 = R1. But, R0 can equal R1 if and only if R0 = R1 = 0.This is because R0 < 2�b and R1 < 2�2b and Y is a b bit quantity. Similarly, if Q1 6= 0,then the remainder R0 can not equal 0. The computation proceeds in the same manner ifthe �rst quotient bit is 0, except that b+1 bits will have been computed for Q0. From thisanalysis, it is apparent that by computing at most 2b+1 bits, the quotient can be correctlyrounded without requiring the actual remainder.The principal disadvantage of this method is that it requires one additional full iteration,and it requires a datapath at least two times larger than is required for non-rounded results.A faster and smaller method has been shown to be possible that was �rst implemented onthe TI 8847 and TMS390C602A [13]. This scheme does not require a two times largerdatapath. Rather, the quotient is computed in a datapath with six extra guard bits. Thequotient at that point is equal to q = dividenddivisor + rem:An extra multiplication is then performed to compute q� divisor. This result is comparedwith the actual dividend, still with only six extra guard bits. From this low-precisioncomparison, the rounding direction can be readily obtained.An additional method has been proposed for rounding in Newton-Raphson implemen-tations that utilize a signed-digit multiplier [10]. The signed-digit representation allows forthe removal of the subtraction or complement cycles of the iteration. In this scheme, itis possible to obtain a correctly rounded quotient in nine cycles, including the �nal multi-plication and ROM access. The redundant binary recoding of the partial products in themultiplier allows for the simple generation of a correct sticky bit. Using this sticky bit anda special recode circuit in the multiplier, correct IEEE rounding is possible at the cost ofonly one additional cycle to the algorithm.3.5 AnalysisBoth the Newton-Raphson and series expansion iterations are e�ective means of imple-menting division in hardware. For both iterations, the cycle time is limited by two multi-plications. In the Newton-Raphson iteration, these multiplications are dependent and mustproceed in series, while in the series expansion, these multiplications may proceed in paral-lel. To reduce the latency of the iterations, an accurate initial approximation can be used.28
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This introduces a tradeo� between additional chip area for a look-up table and the latencyof the divider. An alternative to a look-up table is the use of a partial product array, pos-sibly by reusing an existing 
oating-point multiplier. Instead of requiring additional area,such an implementation could increase the cycle time through the multiplier. The primaryadvantage of division by functional iteration is the quadratic convergence to the quotient.Functional iteration does not readily provide a �nal remainder. Accordingly, correct round-ing for functional iteration implementations is di�cult. When a latency is required lowerthan can be provided by an SRT implementation, functional iteration is currently the pri-mary alternative. It provides a way to achieve lower latencies without seriously impactingthe cycle time of the processor and without a large amount of additional hardware.4 Very High Radix AlgorithmsDigit recurrence algorithms are readily applicable to low radix division and square-rootimplementations. As the radix increases, the quotient-digit selection hardware and divisormultiple process become more complex, increasing cycle time, area or both. To achieve veryhigh radix division with acceptable cycle time, area, and means for precise rounding, it isnecessary to use a variant of the digit recurrence algorithms, with simpler quotient-digitselection hardware. The term \very high radix" applies roughly to dividers which retiremore than 10 bits of quotient in every iteration. The very high radix algorithms presentedare similar in that they all use multiplication for divisor multiple formation and look-uptables to obtain an initial approximation to the reciprocal. They di�er in the number andtype of operations used in each iteration and the technique used for quotient-digit selection.4.1 Accurate Quotient ApproximationsThis high radix algorithm proposed by Wong [42] is as follows. The quotient Q is de�nedin terms of the normalized dividend X and divisor Y asQ = XY :In the algorithm, truncated version of X and Y are used, denoted Xh and Yh. Xh is de�nedas the high-order m + 1 bits of X extended with 0's to get a n-bit number. Similarly, Yhis de�ned as the high order m bits of Y extended with 1's to get a n-bit number. Fromthese de�nitions, it is clear that Xh is always less than or equal to X and Yh is alwaysgreater than or equal to Y . This implies that 1=Yh is always less than or equal to 1=Y , andtherefore Xh=Yh is always less than or equal to X=Y .The algorithm is as follows:1. Initially, set the estimated quotient Q and the variable j to 0. Then, get an approxi-mation of 1=Yh from a look-up table, using the top m bits of Y , returning an m bitapproximation. However, only m�1 bits are actually required to index into the table,as the guaranteed leading one can be assumed. In parallel, perform the multiplicationXh � Y . 29
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2. Scale both the truncated divisor and the previously formed product by the reciprocalapproximation. This involves two multiplications in parallel for maximum perfor-mance, (1=Yh)� Y and (1=Yh)� (Xh � Y )The product (1=Yh) � Y = Y 0 is invariant across the iterations, and therefore onlyneeds to be performed once. Subsequent iterations need only compute one multipli-cation: Y 0 � Ph;where Ph is the current truncated partial remainder. The product Ph � 1=Yh canbe viewed as the next quotient digit, while (Ph � 1=Yh) � Y is the e�ective divisormultiple formation.3. Perform the general recurrence to obtain the next partial remainder:P 0 = P � Ph � (1=Yh)� Y;where P0 = X. Since all products have already been formed, this step only involves asubtraction.4. Compute the new quotient asQ0 = Q+ (Ph=Yh)� (1=2j)= Q+ Ph � (1=Yh)� (1=2j)The new quotient is then developed by forming the product Ph � (1=Yh) and addingthe shifted result to the old quotient Q.5. The new partial remainder P 0 is normalized by left-shifting to remove any leading 0's.It can be shown that the algorithm guarantees m� 2 leading 0's. The shift index j isrevised by j 0 = j +m� 2.6. All variables are adjusted such that j = j 0, Q = Q0, and P = P 0.7. Repeat steps 2 through 6 of the algorithm until j � q.8. After the completion of all iterations, the top n bits of Q form the true quotient. Sim-ilarly, the �nal remainder is formed by right-shifting P by j� q bits. This remainder,though, assumes the use of the entire value of Q as the quotient. If only the top nbits of Q are used as the quotient, then the �nal remainder is calculated by addingQl � Y to P , where Ql comprises the low order bits of Q after the top n bits.This basic algorithm reduces the partial remainder P by m � 2 bits every iteration. Ac-cordingly, an n bit quotient requires dn=(m� 2)e iterations.An advanced version of this algorithm has also been proposed. Rather than representingthe approximate reciprocal by a single constant term 1=Yh obtained from a look-up table,30
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more terms from a Taylor series approximation can be used. The Taylor series approxima-tion equation for 1=Y at Y = Yh is:1=Y = 1=Yh ��Y=Y 2h + (�Y )2=Y 3h � � �The advanced version uses the same iteration steps as in the basic algorithm presentedearlier. However, in step 1, while 1=Yh is obtained from a look-up table using the leadingm bits of Y , in parallel approximations for 1=Y 2h , 1=Y 3h , etc. are obtained from additionallook-up tables, all indexed using the leading m bits of Y . These additional tables have wordwidths of bi given by bi = (m� t� t) + dlog2 te � (m� i�m� i):where t is the number of terms of the series used, and thus the number of look-up tables.The value of t must be at least 2, but all subsequent terms are optional. The advancedversion reduces P 0 by m� t� t� 1 bits per iteration, and therefore the algorithm requiresdn=(m� t � t � 1)e iterations.As in low-radix SRT implementations, both versions of the algorithm can bene�t bystoring the partial remainder P in a redundant representation. However, before any of themultiplications using P as an operand take place, the top m + 3 bits of P must be carry-assimilated for the basic method, and the top m+5 bits of P must be carry-assimilated forthe advanced method. Similarly, the quotient Q can be kept in a redundant form until the�nal iteration. After the �nal iteration, full carry-propagate additions must be performedto calculate Q and P in normal, non-redundant form.The hardware required for this algorithm is as follows. At least one look-up table isrequired of size 2m�1m bits. Three multipliers are required: one multiplier with carryassimilation of size (m + 1)� n for the initial multiplications by the divisor Y , one carry-save multiplier with accumulation of size (m + 1) � (n + m) for the iterations, and onecarry-save multiplier of size (m+1)�m to compute the quotient segments. One carry-saveadder is required to accumulate the quotient in each iteration. Two carry-propagate addersare required: one short adder at least of size m + 3 bits to assimilate the most signi�cantbits of the partial remainder P , and one adder of size n+m to assimilate the �nal quotient.To calculate IEEE double precision quotients, where n = 53, several permutations ofthis algorithm are possible. A slower implementation might utilize the basic method withm = 11. The single look-up table would have 211�1 = 1024 entries, each 11 bits wide, for atotal of 11K bits in the table. Assuming all multipliers with assimilation compute resultsin 1 cycle, it would take 2 initial cycles to perform the table look-up of 1=Yh and performthe two initial multiplications and perform the �rst iteration, 5 cycles for the remainingiterations, 1 cycle to assimilate the quotient, and 1 cycle for rounding. This results in atotal of 9 cycles. A faster implementation using the advanced method with m = 15 andt = 2 would require a total table size of 736K bits. It would require 2 initial cycles, 1 cyclefor the additional iteration, 1 cycle for quotient assimilation, and 1 rounding cycle, for atotal of 5 cycles. Thus, at the expense of several multipliers, adders, and two large look-uptables, the latency of division can be greatly reduced using this algorithm. In general, thealgorithm requires at most dn=(m� 2)e+ 3 cycles.31
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4.2 Short ReciprocalThe Cyrix 83D87 arithmetic coprocessor utilizes a short reciprocal algorithm similar to theaccurate quotient approximation method to obtain a radix 217 divider [23, 2]. Instead ofhaving several multipliers of di�erent sizes, the Cyrix divider has a single 18x69 rectangularmultiplier with an additional adder port that can perform a fused multiply/add. It can,therefore, also act as a 19x69 multiplier. Otherwise, the general algorithm is nearly identical:1. Initially, an estimate of the reciprocal 1=Yh is obtained from a look-up table. In theCyrix implementation, this approximation is of low precision. This approximation isre�ned through two iterations of the Newton-Raphson algorithm to achieve a 19 bitapproximation. This method decreases the size of the look-up table at the expense ofadditional latency. Also, this approximation is chosen to be intentionally larger thanthe true reciprocal by an amount no greater than 2�18. This di�ers from the accuratequotient method where the approximation is chosen to be intentionally smaller thanthe true reciprocal.2. Perform the recurrence P 0 = P � Ph � (1=Yh)� Y (11)Q0 = Q+ Ph � (1=Yh)� (1=2j) (12)where P0 is the dividend X . In this implementation, the two multiplications of (11)need to be performed separately in each iteration. One multiplication is required tocompute Ph � (1=Yh), and a subsequent multiply/add is required to multiply by Yand accumulate the new partial remainder. The product Ph � (1=Yh) is a 19 bit highradix quotient digit. The multiplication by Y forms the divisor multiple requiredfor subtraction. However, the multiplication Ph � (1=Yh) required in (12) can bereused from the result computed for (11). Only one multiplication was required inthe accurate quotient method because the product (1=Yh) � Y was computed onceat the beginning in full precision, and could be reused on every iteration. The Cyrixmultiplier only produces limited precision results, 19 bits, and thus the multiplicationby Y needs to be repeated at every iteration. Because of the specially chosen 19bit short reciprocal, along with the 19 bit quotient digit and 18 bit accumulatedpartial remainder, this scheme guarantees that 17 bits of quotient are retired in everyiteration.3. After the iterations, one additional cycle is required for rounding and postcorrection.Unlike the accurate quotient method, on-the-
y conversion of the quotient digits ispossible, as there is no overlapping of the quotient segments between iterations.Thus, the short reciprocal algorithm is very similar to the accurate quotient algorithm.One di�erence is the method for generating the short reciprocal. However, either methodcould be used in both algorithms. The use of Newton-Raphson to increase the precision ofa smaller initial approximation is chosen merely to reduce the size of the look-up table. Thefundamental di�erence between the two methods is Cyrix's choice of a single rectangular32
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fused multiplier/add unit with assimilation to perform all core operations. While thiseliminates a majority of the hardware required in the accurate quotient method, it increasesthe iteration length from one multiplication to two due to the truncated results.The short reciprocal unit can generate double precision results in 15 cycles: 6 cyclesto generate the initial approximation by Newton-Raphson, 4 iterations with 2 cycles periteration, and one cycle for postcorrection and rounding. As mentioned, with a largertable, the initial approximation could be obtained in as little as 1 cycle, reducing the totalcycle count to 10 cycles. It should be noted that the radix of 17 was chosen due to thetarget format of IEEE double extended precision, where n = 64. This divider can generatedouble extended precision quotients as well as double precision in 10 cycles. In general, thisalgorithm requires at least 2dn=be+ 2 cycles.4.3 Rounding and PrescalingErcegovac and Lang [12] report a high radix division algorithm similar to the previouslypresented methods. Their algorithm involves obtaining an accurate initial approximationof the reciprocal, scaling both the dividend and divider by this approximation, and thenperforming multiple iterations of quotient-selection by rounding and partial remainder re-duction by multiplication and subtraction. By retiring b bits of quotient in every iteration,it is a radix 2b algorithm. The algorithm is as follows to compute X=Y :1. Obtain an accurate approximation of the reciprocal from a table. Rather than us-ing a constant piecewise approximation, this method uses the previously presentedtechnique of linear approximation to the reciprocal. The look-up table stores twocoe�cients, c1 and c2, which have length b + 5 and b + 6 bits respectively. Theseentries are indexed using the most signi�cant bb=2c+ 1 bits of Y . The scaling factorM , which is equivalent to the short reciprocal, is found from c1, c2 and the b+6 mostsigni�cant bits of Y by M = �c1 � Yh + c2Thus, this computation utilizes a carry-save multiplier with an incorporated carry-saveadder.2. Scale Y by the scaling factor M . This involves the carry-save multiplication of theb+ 6 bit value M and the n bit operand Y to form the n + b+ 5 bit scaled quantityY �M .3. Scale X by the scaling factor M , yielding an n + b + 5 bit quantity X �M . Thismultiplication along with the multiplication of step 2 both can share the (b + 6) �(n+ b+ 5) multiplier used in the iterations. In parallel, the scaled divisor M � Y isassimilated. This involves an (n+ b+ 5) bit carry-propagate adder.4. Determine the next quotient digit, needed for the general recurrence:Pj+1 = rPj � qj+1(M � Y )33
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where P0 = M �X . The choice of scaling factor was made for the purpose of greatlysimplifying the quotient-digit selection function. In this scheme, the choice of scal-ing factor allows for quotient-digit selection to be implemented simply by rounding.Speci�cally, the next quotient digit is obtained by rounding the shifted partial re-mainder in carry-save form to the second fractional bit. This can be done using ashort carry-save adder and a small amount of additional logic. The quotient-digitobtained through this rounding is in carry-save form, with one additional bit in theleast-signi�cant place. This quotient-digit is �rst recoded into a radix-4 signed-digitset (-2 to +3), then that result is recoded to a radix-4 signed-digit set (-2 to +2). Theresult of quotient-digit selection by rounding requires 2(b+ 1) bits.5. Perform the multiplication qj+1�z, where z is the scaled divisor M�Y , then subtractthe result from rPj . This can be performed in one step by a fused multiply/add unit.6. Perform postcorrection and any required rounding. As discussed previously, postcor-rection requires at a minimum sign detection of the last partial remainder and thecorrection of the quotient.Throughout the iterations, on-the-
y quotient conversion is used.The latency of the algorithm in cycles can be calculated as follows. At least one cycleis required to form the linear approximation M . One cycle is required to scale Y , and anadditional cycle is required to scale X . dn=be cycles are needed for the iterations. Finally,one cycle is needed for the postcorrection and rounding. Therefore, the total number ofcycles is given by Cycles = dn=be+ 4The hardware required for this algorithm is similar to the Cyrix implementation. Onelook-up table is required of size 2bb=2c(2b + 11) bits to store the coe�cients of the linearapproximation. A (b+6)� (b+6) carry-save fused multiply/add unit is needed to generatethe scaling factor M . One fused multiply/add unit is required of size (b+ 6)� (n+ b+ 5)to perform the two scalings and the iterations. A recoder unit is necessary to recode bothM and qj + 1 to radix-4. Finally, combinational logic and a short CSA are required toimplement the quotient-digit selection by rounding.4.4 Multiplicative Iterative DivisionAn extension to the Cyrix short reciprocal non-restoring division algorithm can be made,as reported by Schwarz [33]. Due to the rectangular fused multiply/add unit in the Cyrixalgorithm, intermediate results are produced in truncated form. Accordingly, each iterationrequires two multiplications. However, by carrying out the iteration in full precision, thetwo multiplications can be reduced to one, in a manner similar to Wong's accurate quotientapproximations. The algorithm is as follows:1. Initially, obtain a b-bit approximation of the reciprocal, 1=Yh.34
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2. Form Y 0 = 1 � (1=Yh � Y ), which has n bits. This requires a multiplication and asubtraction. However, Y 0 is invariant throughout the iterations and only needs to becomputed once. Set the scaled quotient S0 = 0.3. Perform the iteration: Pj+1 = (Pj � Y 0)trSj+1 = Sj + Pjwhere P0 = X , the dividend. The truncation for the partial remainder recurrencerequires n + g bits, where g is the number of guard bits required. It can be shownthat g is equal to the number of iterations plus one, or d(n + 1)=be + 1. Ratherthan accumulating the quotient estimates in each iteration, the partial remainders Pjare accumulated instead. The scaled quotient is formed by this accumulation. Thelatency of the iteration is the multiplication to form Pj+1, performed in parallel withthe addition for the accumulation of the scaled quotient.4. To form the �nal quotient and remainder:Q = Slast � (1=Yh)R = X � Q� YThis algorithm requires 1 cycle to obtain the initial approximation, 1 multiplicationcycle to form the scaled dividend, and 1 cycle to subtract. Each iteration requires 1 cyclefor a parallel multiplication and addition. Finalization requires 2 multiplication cycles, 1subtraction cycle, and 1 cycle for postcorrection and rounding. In total, the algorithmrequires dn=be + 7 cycles to compute full precision quotients and remainders. In terms ofhardware, it requires a multiplier of width n+g, a 2b�b bit look-up table, and a full-precisioncarry-propagate adder.Although interesting from a theoretical aspect, this algorithm is not as attractive as thepreviously described very high radix algorithms, due to its additional latency in formingthe quotient and remainder.4.5 AnalysisThe primary di�erence between these algorithms are the number and width of multipliersused. These have obvious e�ects on the latency of the algorithm and the size of the imple-mentation. In the accurate quotient approximations and short-reciprocal algorithms, thenext quotient digit is formed by a multiplication Ph � (1=Yh) in each iteration. Becausethe Cyrix implementation only has one rectangular multiply/add unit, each iteration mustperform this multiplication in series: �rst this product is formed as the next quotient digit,then the result is multiplied by Y and subtracted from the current partial remainder toform the next partial remainder, for a total of two multiplications. The accurate quotientapproximations method computes Y 0 = Y � (1=Yh) once at the beginning in full precision,35
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and is able to used the result in every iteration. Each iteration still requires two multiplica-tions, but these can be performed in parallel: Ph � Y 0 to form the next partial remainder,and Ph � (1=Yh) to form the next quotient digit.The rounding and prescaling algorithm, on the other hand, does not require a separatemultiplication to form the next quotient digit. Instead, by scaling both the dividend anddivisor by the initial reciprocal approximation, the quotient-digit selection function can beimplemented by simple rounding logic directly from the redundant partial remainder. Eachiteration only requires one multiplication, reducing the area required compared with theaccurate quotient approximations algorithm, and decreasing the latency compared with theCyrix short-reciprocal algorithm. However, because both input operands are prescaled, the�nal remainder is not directly usable. If a remainder is required, it must be postscaled.Overall, the rounding and prescaling algorithm achieves the lowest latency and cycle timewith a reasonable area, while the Cyrix short-reciprocal algorithm achieves the smallestarea.5 Variable Latency AlgorithmsDigit recurrence and very high radix algorithms all retire a �xed number of quotient bitsin every iteration, while algorithms based on functional iteration retire a quadraticallyincreasing number of bits every iteration. This section discusses methods for implementingdividers that compute results in a variable amount of time. Self-timing is one method ofimplementing a variable latency divider, as discussed in section 2. This section presentstwo additional techniques for reducing the average latency of division computation. Thesetechniques take advantage of the fact that the computation for certain operands can becompleted sooner than others, or reused from a previous computation. Reducing the worstcase latency of a divider requires that all computations made using the functional unit willcomplete in less than a certain amount of time. In some cases, modern processors are ableto use the results from functional units as soon as they are available. Providing a result assoon as it is ready can therefore increase overall system performance. For a given divisionimplementation it may not be possible to reduce the latency for all computations. However,using these techniques, it is possible to reduce the latency for certain computations, with acorresponding increase in system performance.5.1 Result CachesComputer applications typically perform computations on input data, and produce �naloutput data based on the results of the computation. Due to the nature of applications, theinput operands for one calculation are often the same as those in a previous calculation. Forexample, in matrix inversion, each entry of the matrix must be divided by the determinant.By recognizing that such redundant behavior exists in applications, it is possible to takeadvantage of this fact and decrease the e�ective latency of computations.Richardson [32] presents the technique of result caching as a means of decreasing thelatency of otherwise high-latency operation, such as division. This technique exploits theredundant nature of certain computations by trading execution time for increased memory36
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Figure 11: CPI vs area with and without division cachestorage. Once a computation is calculated, it is stored in a result cache. The operation ofa result cache is as follows. When a targeted operation is issued by the processor, accessto the result cache is initiated simultaneously. If the cache access results in a hit, thenthat result is used, and the operation is halted. If the access misses in the cache, then theoperation writes the result into the cache upon completion. Various sized direct-mappedresult caches were simulated which stored the results of double precision multiplies, divides,and square roots. The applications surveyed included several from the Spec92 and PerfectClub benchmark suites. Signi�cant reductions in latency were obtained in these benchmarksby the use of a result cache. However, the standard deviation of the resulting latencies acrossthe applications was large.In another study, Oberman [28] investigated in more detail the performance and areae�ects of caches that target division, square-root, and reciprocal operations in applicationsfrom the SPECfp92 and NAS benchmark suites. Using the register bit equivalent (rbe)model of Mulder [11], a system performance vs. chip area relationship was derived for acache that targets only double precision division operations. Each cache entry stores a 55bit mantissa, indexed by the dividend's and divisor's mantissas with a valid bit, for a totalof a 105 bit tag. The total storage required for each cache entry is therefore approximately160 bits. The caches were fully-associative, using random replacement on a miss. Figure 11shows the relationship derived. From �gure 11, is is apparent that if an existing dividerhas a high latency, as in the case of a radix-4 divider, the addition of a division cache isnot area e�cient. Rather, better performance per area can be achieved by improving the37
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pFigure 12: Hit rates for in�nite division and reciprocal cachesdivider itself, by any of the means discussed previously. Only when the base divider alreadyhas a very low latency can the use of division cache be as e�cient as simply improving thedivider itself.An alternative to the caching of quotients is a reciprocal cache, where only the reciprocalis stored in the cache. Such a cache can be used when the division algorithm �rst computesa reciprocal, then multiplies by the dividend to form a quotient, as in the case of theNewton-Raphson algorithm. A reciprocal cache has two distinct advantages over a divisioncache. First, the tag for each cache entry is smaller, as only the mantissa of the divisorneeds to be stored. Accordingly, the total size for each cache entry would be approximately108 bits, compared with the approximately 160 bits required for a division cache entry.Second, the hit rates are larger, as each entry only needs to match on one operand, nottwo. A comparison of the hit rates obtained for in�nite division and reciprocal caches isshown in �gure 12. Similar results are shown in �gure 13 for �nite sized caches. It is readilyapparent that for these applications, the reciprocal cache hit rates are consistently largerand less variable than the division cache hit rates. This study showed that a divider usinga reciprocal cache with a size of about eight times that of an 8-bits-in, 8-bits-out ROMlook-up table can achieve a speedup of 1.86. Furthermore, the variance of this speedupacross di�erent applications is low. 38
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Figure 13: Hit rates for �nite division and reciprocal caches5.2 Speculation of Quotient DigitsA method for implementing an SRT divider that retires a variable number of quotient bitsevery cycle is reported by Cortadella [3]. The goal of this algorithm is to use a simplerquotient-digit selection function than would normally be possible for a given radix by usingfewer bits of the partial remainder and divisor than are speci�ed for the given radix andquotient digit set. This new function does not give the correct quotient digit all of the time.When an incorrect speculation occurs, it is necessary to use at least one iteration to �x theincorrect quotient digit. However, if the probability of a correct digit is high enough, thenthe resulting lower cycle time due to the simple selection function will o�set the increase inthe number of iterations required. In this implementation, a variation of the standard SRTrecurrence is used: P sj+1 = rPj � qsj+1d (13)where qsj+1 is the speculated next quotient digit. After the iteration completes, it is necessaryto determine whether the new partial remainder is within the allowable range as set by theredundancy of the quotient digit set. If it is within the allowable range, then Pj+1 = P sj+1,and the algorithm continues. Otherwise, the partial remainder needs to be corrected. Thecorrection cycle performs: Pj+1 = P sj+1 � qcj+1d (14)39



www.manaraa.com

Accordingly, qcj+1 has the same weight as qsj+1, and the true next quotient digit is given byqj+1 = qsj+1 + qcj+1An enhancement to this basic scheme is to allow another option in the case of anincorrectly speculated quotient digit. If the error is small, it is possible to advance by anumber of quotient bits which is less than a whole digit, and this is known as a partialadvance. The iteration used for partial-advance isPj+1 = pPj � qpj+1d (15)where log2 p is the number of partially advanced bits. Accordingly, the partially advancequotient digit qpj+1 overlaps with the previous digit by log2 rp bits.The speculation/quotient-digit selection tables were designed iteratively, performingthousands of random division simulations to determine which quotient values should bereturned for each input. These simulations were repeated for various radices using a vary-ing number of divisor and partial remainder bits as input. It is also necessary to determinewhen an incorrect speculation occurs. While this could be done by implementing a trueradix-r quotient-digit selection function in parallel, it is faster and less complex to sim-ply detect whether or not the next partial remainder is within the allowable range. Thecomparisons that must be performed every iteration are��d̂c � 2�f+1 � P̂ c � �d̂c � 2�f+1 (16)where d̂c and P̂ c are truncated, carry-assimilated forms of d and P , each with f fractionalbits. Because this comparison uses truncated values of d and P , it is possible for thecomparison to fail when the speculation is, in fact, correct. This comparison is conservative,so that all incorrect speculations are detected as incorrect, but some correct speculationscan also be detected as incorrect. The probability of correctly detecting correct speculationsincreases with f . The hardware required for digit speculation for both schemes is shown in�gure 14.Several di�erent variations of this implementation were considered for di�erent radicesand base divider con�gurations. A radix-64 implementation was considered which couldretire up to 6 bits per iteration. It was found to be 30% faster than the fastest conventionalimplementation of the same base datapath, which was a radix-8 divider using segments.However, because of the duplication of the quotient-selection logic for speculation, it re-quired about 44% more area than a conventional implementation. A radix-16 implemen-tation (maximum 4 bits per cycle) implementation using the same radix-8 datapath wasabout 10% faster than a conventional radix-8 divider, with an area reduction of 25%.5.3 AnalysisSelf-timing, result caches, and quotient digit speculation have been shown to be e�ectivemethods for reducing the average latency of division computation. A reciprocal cache is ane�cient way to reduce the latency for division algorithms that �rst calculate a reciprocal.While reciprocal caches do require additional area, they require less than that required40
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by much larger initial approximation look-up tables, while providing a better reduction inlatency. Self-timed implementations use circuit techniques to generate results in variabletime. The disadvantage of self-timing is the complexity in the clocking, circuits, and testingrequired for correct operation. Quotient digit speculation is one example of reducing thecomplexity of SRT quotient-digit selection logic for higher radix implementations.As processors become more complex and better able to utilize functional units thatcomplete in variable time, variable latency dividers will become more important. Thetechniques presented in the �rst sections can be used to minimize the cycle time and worstcase latency of the divider implementation. Variable latency techniques can then be includedto further reduce the average division latency. This combination of algorithms allows forachieving maximum system performance.6 ComparisonFour classes of division algorithms have been presented. A summary of several algorithmsfrom these classes is shown in table 1.Algorithm Iteration Time Latency (cycles) Approximate AreaSRT Qsel table + dnr e (+ scale) Qsel table +(multiple form + CSAsubtraction)Newton-Raphson 2 serial (2dlog2 ni e + 1)tmul + 1 1 multiplier +multiplications table + controlseries expansion 2 parallel (dlog2 ni e+ 2)tmul + 1 1 multiplier +multiplications table + controlaccurate quotient 1 multiplication (dni e+ 1)tmul 3 multipliers +approx table + controlshort reciprocal 2 serial 2dni etmul + 1 1 short multiplier +multiplications table + controlround/prescale 1 multiplication (dni e+ 2)tmul + 1 1 multiplier +table + controlTable 1: Summary of algorithmsIn this table, n is the number of bits in the input operands, r = log2 radix for SRTalgorithms, i is the number of bits of accuracy from an initial approximation, and tmul isthe latency of the a fused multiply/add unit in cycles. None of the latencies include anyadditional time required for rounding or normalization.Table 2 illustrates the e�ects of algorithm, operand length, width of initial approxima-tion, and multiplier latency on division latency. All operands are IEEE double precisionmantissas, with n = 53. Table look-ups for initial approximations require 1 cycle. The SRTlatencies are separate from the others in that they do not depend on multiplier latency, and42
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they are only a function of the radix of the algorithm for the purpose of this table. For themultiplication-based division algorithms, latencies are shown for multiplier latencies of 1, 2and 3 cycles. Additionally, latencies are shown for pipelined as well as unpipelined multipli-ers. A pipelined multiplier can begin a new computation every cycle, while an unpipelinedmultiplier can only begin after the previous computation has completed.Latency (cycles)Algorithm Pipelined Initial Approx tmul = 1 tmul = 2 tmul = 3SRT - r = 2 27 - -r = 3 18 - -r = 4 14 - -r = 8 7 - -Newton-Raphson no/yes i = 8 8 15 22no/yes i = 16 6 11 16series expansion no i = 8 9 17 25no i = 16 7 13 19yes i = 8 9 10 14yes i = 16 7 8 11accurate quotient no/yes i = 8 (basic) 8 16 24approximations no/yes i = 16 (basic) 5 10 15no/yes i = 13 and 3 6 9t = 2 (adv)short reciprocal no/yes i = 8 15 29no/yes i = 16 9 17round/prescale no i = 8 10 19 28no i = 16 7 13 19yes i = 8 10 18 26yes i = 16 7 10 14Table 2: Latencies for di�erent con�gurationsFrom table 2, the advanced version of the accurate quotient approximations algorithmprovides the lowest latency. However, the area requirement for this implementation istremendous, as it requires at least a 736K bits look-up table and three multipliers. Forrealistic implementations, with tmul = 2 or tmul = 3 and i = 8, the lowest latency isachieved through a series expansion implementation. However, all of the multiplication-based implementations are very close in performance. This analysis shows the extremedependence of division latency on the multiplier's latency and throughput. A factor ofthree di�erence in multiplier latency can result in nearly a factor of three di�erence indivision latency for several of the implementations.It is di�cult for an SRT implementation to perform better than the multiplication-basedimplementations due to infeasibility of high radix at similar cycle times. However, through43
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the use of scaling and higher redundancy, it may be possible to implement a radix 256SRT divider that is competitive with the multiplication-based schemes in terms of cycletime and latency. The use of variable latency techniques, such as self-timing, can providefurther means for matching the performance of the multiplication-based schemes, withoutthe di�culty in rounding that is intrinsic to the functional iteration implementations.7 ConclusionIn this paper, the four major classes of division algorithms have been presented. The sim-plest and most common class found in the majority of modern processors that have hardwaredivision support is digit recurrence, speci�cally SRT. Recent commercial SRT implementa-tions have included radix 2, radix 4, and radix 8. These implementations have been chosenin part because they operate in parallel with the rest of the 
oating-point hardware and donot create contention for other units. Additionally, for small radices, it has been possibleto meet the tight cycle-time requirements of high performance processors without requiringlarge amounts of die area. The disadvantage of these SRT implementations is their rela-tively high latency, as they only retire 1-3 bits of result per cycle. As processors continueto seek to provide an ever-increasing amount of system performance, it becomes necessaryto reduce the latency of all functional units, including division.An alternative to SRT implementations is functional iteration, with the series expan-sion implementation the most common form. The latency of this implementation is directlycoupled to the latency and throughput of the multiplier and the accuracy of the initial ap-proximation. The analysis presented shows that a series expansion implementation providesthe lowest latency for reasonable areas and multiplier latencies. If minimizing area is of pri-mary importance, then such an implementation typically shares an existing 
oating-pointmultiplier. This has the e�ect of creating additional contention for the multiplier, possiblyreducing the performance of multiplication. An alternative is to provide an additional mul-tiplier, dedicated for division. This can be an acceptable tradeo� if a large quantity of areais available and maximum performance is desired. The main disadvantage with functionaliteration is the lack of remainder and the corresponding di�culty in rounding.Very high radix algorithms are an attractive means of achieving low latency while alsoproviding a true remainder. The only commercial implementation of a very high radix algo-rithm is the Cyrix short-reciprocal unit. This implementation makes e�cient use of a singlerectangular multiply/add unit to achieve lower latency than most SRT implementationswhile still providing a remainder. Further reductions in latency could be possible by usinga full-width multiplier, as in the rounding and prescaling algorithm.The Hal Sparc64 self-timed divider is the only commercial implementation that gener-ates quotients with variable latency depending upon the input operands. It is the circuitdesign that provides for the lower and variable latency in that implementation. Reciprocalcaches have been shown to be an e�ective means of reducing the latency of division forimplementations that generate a reciprocal. Quotient digit speculation is also a reasonablemethod for reducing SRT division latency.The importance of division implementations will continue to increase as die area in-44
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creases and feature sizes decrease. The correspondingly larger amount of area available for
oating-point units will allow for implementations of higher radix, lower latency algorithms.8 AcknowledgementsThe authors wish to thank N. Quach for his helpful discussions throughout this work, andG. McFarland for reading and commenting on an early version of this paper.
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A Pentium BugIt is interesting to inspect the radix-4 table of �gure 4 somewhat more carefully. It is similarto that used in the radix-4 divider of the Intel Pentium [34]. In such a radix-4 scheme, thetable is designed such that the shifted next partial remainder will never be greater than8=3� d, and therefore, it is always bounded. In the �rst release of the Pentium, the PLAimplementing the quotient-selection logic was missing �ve entries along the 8=3 � d line,corresponding to the truncated divisor values of 1.0001, 1.0100, 1.0111, 1.1010, and 1.1101.These entries should have contained the next-quotient value of 2. Instead, due to an errorin the process of programming the PLA, these �ve values were set to 0. Accordingly, it waspossible for the Pentium divider to produce erroneous results, depending upon whether ornot in the process of calculating the quotient those entries were ever used. This gave riseto a large debate with regard to the frequency of erroneous results, which Intel has claimedto be approximately 1 in 9 billion random divisions. Such an experience demonstrates theimportance of thorough and correct testing of all components of a CPU, at all stages of thedesign process.B Square-RootB.1 SRTThe recurrence for square-root is conceptually similar to that of division. However, for
oating-point representation and normalized operand, an additional requirement is madethat the operand must have an even exponent in order to permit the computation of theresulting exponent. Accordingly, it may be necessary to prescale the operand to meet thisrequirement.The following recurrence is used at every iteration:P0 = operand� 1 (17)Pj+1 = rPj � 2S[j]sj+1� s2j+1r�(j+1) (18)where Pj is the residual, at iteration j. Additionally, the result is denoted by s and S suchthat, s = S[n] = nXi=0 sir�iThe next result digit is chosen using the following function:sj+1 = SEL(ŷj; Ŝ[j]) (19)where ŷj and Ŝ[j] are estimates of rPj and S[j] respectively.From equations (2) and (18), the similarity between the recurrences for division andsquare root can be seen. The digit sets and residual representation can be formed in thesame manner as is done for division. Additionally, the function used to generate the nextresult digit is similar to that of division. Thus, division and square-root can and usually doshare the same hardware. 46
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Typically, though, the �rst few bits of the square-root result require a special result-selection function, di�erent than the standard look-up table used for the rest of the it-erations. However, Ercegovac [7] shows a method for generating the �rst few bits of theresult without requiring a separate initial table. Speci�cally, they show a radix-4 squareroot implementation that generates the �rst result digit directly from the same table by theaddition of three extra gates. This allows for a simpli�ed implementation with no loss ofperformance.B.2 Functional IterationSquare-root can be computed using the Newton-Raphson equation (5) in a manner similarto division. The choice of priming function to solve must be selected carefully. An initialchoice might be f(X) = X2 � b = 0 (20)which has a root at X = pb. However, a direct application of (5) to (20) will result inX1 = X0 � f(X0)f 0(X0)X1 = X0 � (X20 � b)(2X)...Xi+1 = 12(Xi + bXi ) (21)Unfortunately, this direct application leads to an iteration which contains a division, whichitself is an operation that requires iteration in order to be computed. A better method forcomputing square-root is to rewrite the the computation aspb = b� 1pb :This leads to a priming function off(X) = 1X2 � b = 0: (22)When the Newton-Raphson equation is applied, the iteration becomesX1 = X0 � f(X0)f 0(X0)X1 = X0 � 1=X20 � b�2=X30...Xi+1 = 12 �Xi � (3� b�X2i ) (23)47
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This analysis shows that the reciprocal square-root Newton-Raphson iteration requires threemultiplications, a subtraction, and a division by two, which can be implemented as a shift.The �nal square-root is obtained by a multiplying the inverse square-root result with theinput operand. By noting that the division operation in (21) can be roughly be replaced bythe three multiplications of (23), it can be inferred that the latency of a division operationshould be designed to be no worse than a factor of three of the multiplication latency.The development for square-root calculation using a series expansion implementationproceeds similarly. Initially let N0 = b andD0 = b. In square-root, like division, the numberof iterations can be reduced by prescaling. Accordingly, b should be prescaled by a moreaccurate approximation of the reciprocal square-root of b, and then the algorithm shouldbe run on the scaled b0. A general relationship can be developed, such that each step of theiteration involves three multiplicationsNi+1 = Ni �R2i and Di+1 = Di � Ri;a subtraction, and a shift, Ri+1 = 3�Di2 :From this iteration, N converges quadratically towards 1, and D converges toward pb.

48



www.manaraa.com

References[1] D. E. Atkins. Higher-radix division using estimates of the divisor and partial remain-ders. IEEE Transactions on Computers, C-17(10), October 1968.[2] W. S. Briggs and D. W. Matula. A 17x69 Bit multiply and add unit with redundantbinary feedback and single cycle latency. In Proceedings of the 11th IEEE Symposiumon Computer Arithmetic, pages 163{170, July 1993.[3] J. Cortadella and T. Lang. Division with speculation of quotient digits. In Proceedingsof the 11th IEEE Symposium on Computer Arithmetic, pages 87{94, July 1993.[4] D. L. Fowler et al. An accurate, high speed implementation of division by reciprocalapproximation. In Proceedings of the 9th IEEE Symposium on Computer Arithmetic,pages 60{67, September 1989.[5] D. DasSarma and D. Matula. Measuring the accuracy of ROM reciprocal tables. IEEETransactions on Computers, 43(8):932{940, August 1994.[6] D. DasSarma and D. Matula. Faithful bipartite ROM reciprocal tables. In Proceedingsof the 12th IEEE Symposium on Computer Arithmetic, pages 12{25, July 1995.[7] M. D. Ercegovac and T. Lang. Radix-4 square root without initial PLA. IEEE Trans-actions on Computers, 39(8):1016{1024, August 1990.[8] M. D. Ercegovac and T. Lang. Simple radix-4 division with operands scaling. IEEETransactions on Computers, C-39(9):1204{1207, September 1990.[9] M. D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence Algorithmsand Implementations. Kluwer Academic Publishers, 1994.[10] H. Kabuo et al. Accurate rounding scheme for the Newton-Raphson method usingredundant binary representation. IEEE Transactions on Computers, 43(1):43{51, Jan-uary 1994.[11] J. Mulder et al. An area model for on-chip memories and its application. IEEE Journalof Solid-State Circuits, 26(2), February 1991.[12] M. D. Ercegovac et al. Very high radix division with selection by rounding and prescal-ing. In Proceedings of the 11th IEEE Symposium on Computer Arithmetic, pages 112{119, July 1993.[13] M. Darley et al. The TMS390C602A 
oating-point coprocessor for Sparc systems.IEEE Micro, 10(3):36{47, June 1990.[14] M. J. Schulte et al. Optimal initial approximations for the Newton-Raphson divisionalgorithm. Computing, 53:233{242, 1994.49



www.manaraa.com

[15] S. F. Anderson et al. The IBM System/360 Model 91: Floating-point execution unit.IBM Journal of Research and Development, 11:34{53, January 1967.[16] T. Asprey et al. Performance features of the PA7100 microprocessor. IEEE Micro,13(3):22{35, June 1993.[17] J. Fandrianto. Algorithm for high-speed shared radix 4 division and radix 4 squareroot. In Proceedings of the 8th IEEE Symposium on Computer Arithmetic, pages 73{79,May 1987.[18] J. Fandrianto. Algorithm for high-speed shared radix 8 division and radix 8 squareroot. In Proceedings of the 9th IEEE Symposium on Computer Arithmetic, pages 68{75,July 1989.[19] M. Flynn. On division by functional iteration. IEEE Transactions on Computers,C-19(8), August 1970.[20] ANSI/IEEE std 754-1985, IEEE standard for binary 
oating-point arithmetic.[21] Intel, i860 64-bit microprocessor programmer's reference manual, 1989.[22] P. W. Markstein. Computation of elementary function on the IBM RISC System/6000processor. IBM Journal of Research and Development, pages 111{119, January 1990.[23] D. Matula. Highly parallel divide and square root algorithms for a new generation 
oat-ing point processor. In SCAN-89, International Symposium on Scienti�c Computing,Computer Arithmetic, and Numeric Validation, October 1989.[24] Microprocessor Report, Various issues, 1994.[25] P. Montuschi and L. Ciminiera. Over-redundant digit sets and the design of digit-by-digit division units. IEEE Transactions on Computers, 43(3):269{277, March 1994.[26] S. Oberman and M. Flynn. Design issues in 
oating-point division. Technical ReportNo. CSL-TR-94-647, Computer Systems Laboratory, Stanford University, December1994.[27] S. Oberman and M. Flynn. Implementing division and other 
oating-point opera-tions: a system perspective. To be presented at SCAN-95, International Symposiumon Scienti�c Computing, Computer Arithmetic, and Numeric Validation, Wuppertal,Germany, September 1995.[28] S. Oberman and M. Flynn. On division and reciprocal caches. Technical Report No.CSL-TR-95-666, Computer Systems Laboratory, Stanford University, April 1995.[29] S. Oberman, N. Quach, and M. Flynn. The design and implementation of a high-performance 
oating-point divider. Technical Report No. CSL-TR-94-599, ComputerSystems Laboratory, Stanford University, January 1994.50



www.manaraa.com

[30] J. A. Prabhu and G. B. Zyner. 167 MHz Radix-8 
oating point divide and squareroot using overlapped radix-2 stages. In Proceedings of the 12th IEEE Symposium onComputer Arithmetic, pages 155{162, July 1995.[31] N. Quach and M. Flynn. A radix-64 
oating-point divider. Technical Report No.CSL-TR-92-529, Computer Systems Laboratory, Stanford University, June 1992.[32] S. E. Richardson. Exploiting trivial and redundant computation. In Proceedings of the11th IEEE Symposium on Computer Arithmetic, pages 220{227, July 1993.[33] E. Schwarz. High-radix algorithms for high-order arithmetic operations. Technical Re-port No. CSL-TR-93-559, Computer Systems Laboratory, Stanford University, January1993.[34] H. P. Sharangpani and M. L. Barton. Statistical analysis of 
oating point 
aw in thepentium processor, November 1994.[35] P. Soderquist and M. Leeser. Area and performance tradeo�s in 
oating-point divisionand square root implementations. Technical Report EE-CEG-94-5, Cornell School ofElectrical Engineering, December 1994.[36] H. Srinivas and K. Parhi. A fast radix-4 division algorithm and its architecture. IEEETransactions on Computers, 44(6):826{831, June 1995.[37] A. Svoboda. An algorithm for division. Information Processing Machines, 9:29{34,1963.[38] K. G. Tan. The theory and implementation of high-radix division. In Proceedings ofthe 4th IEEE Symposium on Computer Arithmetic, pages 154{163, June 1978.[39] G. S. Taylor. Radix 16 SRT dividers with overlapped quotient selection stages. InProceedings of the 7th IEEE Symposium on Computer Arithmetic, pages 64{71, June1985.[40] S. Waser and M. Flynn. Introduction to Arithmetic for Digital Systems Designers.Holt, Rinehart, and Winston, 1982.[41] T. E. Williams and M. A. Horowitz. A zero-overhead self-timed 160-ns 54-b CMOSdivider. IEEE Journal of Solid-State Circuits, 26(11):1651{1661, November 1991.[42] D. Wong and M. Flynn. Fast division using accurate quotient approximations to reducethe number of iterations. IEEE Transactions on Computers, 41(8):981{995, August1992. 51


